US009426155B2

a2 United States Patent (10) Patent No.: US 9,426,155 B2

Chao et al. 45) Date of Patent: Aug. 23,2016
(54) EXTENDING INFRASTRUCTURE SECURITY USPC i 726/7-9; 713/168-172
TO SERVICES IN A CLOUD COMPUTING See application file for complete search history.
ENVIRONMENT
(56) References Cited
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US) U.S. PATENT DOCUMENTS
. . . . 2005/0223413 Al* 10/2005 Duggan et al. 726/3
(72) Inventors: Ching-Yun Chao, Austin, TX .(US), 2010/0211781 AL 872010 Auradkar ef al.
John Yow-Chun Chang, Austin, TX 2010/0217850 Al 8/2010 Ferris
(US); Paul W. Bennett, Austin, TX 2011/0022812 Al 1/2011 van der Linden et al.
(US); John C. Sanchez, Pflugerville, (Continued)
TX (US); Donald R. Woods, Raleigh,
NC (US); Yuhsuke Kaneyasu, Tokyo OTHER PUBLICATIONS
(Cji);(ggl)l;asntluiiing:;::t’ Sﬁﬁz}l,::le’ Mondol, “Cloud security solutions using FPGA,” IEEE, Jun. 15,
A X 2011.
Monteith, W.lncl}ester (GB); Marcos IBM, “Method of creating a componentized architecture for unify-
Lohmann, Limeira (BR) ing resource sharing scenarios in Cloud Computing environment,”
IPCOMO000193146D, Feb. 11, 2010.
(73) Assignee: International Business Machines (Continued)
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Ali Abyanch))
patent is extended or adjusted under 35 (74) Allorney, Agenl, or Firm — Richard A. Wllhelm;
U.S.C. 154(b) by 187 days. David H. Judson
(21) Appl. No.: 13/865,692 67 ABSTRACT
_ A cloud deployment appliance (or other platform-as-a-ser-
(22) Filed: Apr. 18, 2013 vice (IPAS) infrastructure software) includes a mechanism
. A to deploy a product as a “shared service” to the cloud, as
(65) Prior Publication Data well as to enable the product to establish a trust relationship
US 2014/0317716 Al Oct. 23, 2014 between itself and the appliance or IPAS. The mechanism
further enables multiple products deployed to the cloud to
(51) Int.ClL form trust relationships with each other (despite the fact that
GO6F 7/04 (2006.01) each deployment and each product typically, by the nature of
HO4L 29/06 (2006.01) the cloud deployp}ent, are intended to be 1solat§q from one
(52) US.Cl another). In addition, once deployed and provisioned into
LT) the cloud, a shared service can become part of a single
CPC e HO4L 63/10 (2013.01); H04L2%31/30%115 sign-on (SSO) domain automatically. SSO is facilitated
. . . (01) using a token-based exchange. Once a product registers with
(58) Field of Classification Search a token service, it can participate in SSO. This approach

CPC HO4L 63/0807; HO4L 63/0815; HO04L
63/0823; HOAL 63/0884; HO4L 63/083;

HO4L 63/08; HO4L 63/0853; GOGF 21/31;

GOGF 21/335; GOGF 21/41; GOGF 21/30;

GOGF 21/34; GO7F 7/1008

enables enforcement of consistent access control policy
across product boundaries, and without requiring a user to
perform any configuration.

21 Claims, 7 Drawing Sheets

100
110
104
1o
== |11
SERVER
112
%
106 | 1y
1y

US 9,426,155 B2
Page 2

(56)

2011/0258692
2011/0302415
2012/0072985
2012/0096271
2012/0291114
2013/0007845
2013/0086670
2013/0191884
2013/0254847
2013/0332515
2013/0332982

U.S.

Al
Al
Al
Al*
Al*
Al
Al*
Al*
Al
Al
Al*

References Cited

PATENT DOCUMENTS

10/2011
12/2011
3/2012
4/2012
11/2012
1/2013
4/2013
7/2013
9/2013
12/2013
12/2013

Morrison et al.

Ahmad et al.

Davne et al.

Ramarathinam et al. 713/172
Poliashenko et al. 726/8
Chang et al.

Vangpat et al. 726/8
Leicher et al.cccoovenee 726/4
Adams et al.

Jiminez et al.

Raoetal ...coooevvvnvnnnnne 726/1

OTHER PUBLICATIONS

Anonymous, “Advanced Cloud—Cloud Instance Open Authentica-
tion (OAuth) Security Mechanism,” IPCOM000205927D, Apr. 8,
2011.

Buecker et al, “Cloud Security Guidance, IBM Recommendations
for the Implementation of Cloud Security” 2009.

Wu et al, “Information Flow Control in Cloud Computing,” Pro-
ceedings 2010 6th International Conference on Collaborative Com-
puting: Networking, Applications and Worksharing, 2010.
Written Opinion and International Search Report, PCT/CA2014/
050176, Aug. 13, 2014.

* cited by examiner

U.S. Patent

1M\£:j]

106~
o

Aug. 23, 2016

Sheet 1 of 7

US 9,426,155 B2

[NNN
i C_ 4
SERVER CLIENT
108
2
FIG. 2 00
[T~ ————————————————— ———-1
| PERSISTENT |
I PROCESSOR UNIT MEMORY STORAGE I
' / N N '
: 204 iﬁ 29? i; 206 i; 208 :
| < > |
L 210 212 @ 214 |
I N / / |
| COMMUNICATIONS INPUT/QUTPUT |
| UNIT UNIT DISPLAY |
\ —c————— ———————— ——————— _ J

COMPUTER
READABLE

—————————

220

US 9,426,155 B2

Sheet 2 of 7

Aug. 23, 2016

U.S. Patent

¢ 'DI4d TUYMLIOS ONY TUYMAUYH
X ﬂ | QNN&
00€ WJD SINILSAS
TUYMLIOS THVMLAOS e @ SIS)
3SVEVLVA MIAYIS 3OVHO0L o Nl
WHOMLAN SNDHOMLAN @ H3INO3aVE FHNLDILHDUY
@ Wel oS
NOILYZITYNLYIA
o —
/
20¢ 0=l /X (=2 uu
IOVHOLS _
SIN3MD WNLYIA
SNOILYDMddY SYHOMLIN WNLAIA
WNLYIA WALYIA
INTWIOYNYIV
INFWTIAINS ANV INIWIOVNYI VLHOd H3SN ONIDINd ONV ONINOISIAON
ONINNY1d V1S 13A3130IAY3S ONIY3LIN 304N0STY
y0g
SQVOTHHOM
AY3AIT3A INIWIDYNYI
. ONISSTO0Yd ow_,_n_u_w%ww_wn_ NOILYONa3 T10A034NANY | [NOILVOIAYN
NOILOVSNY.L i NOOYSSY1D INIWNAOT3A3a/ [ONV ONIddYI
90¢ WNLYIA TIYML0S

US 9,426,155 B2

Sheet 3 of 7

Aug. 23, 2016

U.S. Patent

J3HOLINON ANV G3OVNVIA ATLNIOITIALNI
anod NI NNY ANV daSN3dSId
INJWAO143Ad d3ZINOLSND ATHOIH
‘SIW3LSAS TVNLYIA

SIdV 1S3¥ ANV 110 'IN 0'Z gam

'

__m_|n_”n_nn_n_nn_n_.n_|m__ __w_|n_”n_n_n_nn_n_n_”n_|_w_ |—|_
__u_u_u_u_u_un_u_un:u_ _n__un:u_un_u_u_u_un_ w._.n__N_Ow mmw<_>__ / Wn_DON_mu
ANV SNY3L1vd dAO 00V ANV S43Sn
cov SoveOLs STOVMOVd LdIMOS ANV SNHILLYd
WHOMLIN SAOVINI TYNLYIA FdYMITAAIN
SHOSIANTAAH NOILONND LNJWIOVNVYIA FONVITddY
-anoTo NOILVHNOIANOD FHVYMAYVYH
:JONVITddVY
v "DIAd

US 9,426,155 B2

Sheet 4 of 7

Aug. 23, 2016

U.S. Patent

ano1d FHL Ol
S3OVINI IHL AO1d3d

| o] |]| [
|]
|)| o | [}

SHOSIAYIdAH

ano1d 3HL 4N 13S @

NOILVITddY TIVLSNI
SNOILOINNO?D 3NI43d SLdIN0S WOLSND aay @
ALIYND3S ZINOLSND
SLdINDS
S3IOVNMOVd 1dIMOS
NY3LLVd JHL SIOVINI TYNLHIA
3ZINOLSND ANV 193138 IZINOLSND ANY 19313S
200N JUYMLA0S WOLSND TYNOLLIaaY
WOLSND
W31SAS ONILVHIdO
300N
KOLSMD SHILBAQ YIAYIS dLLH Wl
HIAHIS NOILYDIddY 21eydsgem
300N
WOLSNd S311404d
NY3LLYd AD010dOL IOV TYNLHIA
SNY3L1Yd AD010dOL SAOVINI IYNLYIA IZINOLSND
Q3ZINOLSND ANV 4IAY0T-3xd ONV Q3aY0T-34d
HIAOTdIA AVOTHHOM W

¢ DIA

U.S. Patent Aug. 23,2016 Sheet 5 of 7
602 600
N /
IWD/IPAS
SECURITY SERVER SHARED SERVICE
| |
T oo
M " T
IWD/IPAS | TOKEN ! RSA PUBLIC KEYS
SECURITY | | & N
SERVER | |) & o RSA PRIVATE KEY
L g il
T T T
| |
\ \vl
FIG. 6
702 700
N /
IWD/IPAS IWD/IPAS
SECURITY SERVER SYSTEM SERVER
i DEPLOY N
] T
M- = - - Tl
N .
| W)= |
| =1 F y
I ~ SIGN | |
IWD/IPAS | ! TOKEN }=—~ | SHARED SERVICE
SECURITY . '« ' TOKEN
SERVER | | & \OT | RSATOKEN
' ®)&| TOKEN | 51| RSA PUBLIC KEYS
| | it
|| empe=ly |
I_!r - RSA PRIVATE KEY
| |

US 9,426,155 B2

US 9,426,155 B2

Sheet 6 of 7

Aug. 23, 2016

U.S. Patent

A

H3AIAOYd
S30IAY3S
d3uvHS
HOLINOW

(
908

T@\N T4 .

218 .
NIS
mm__w JOIAN3S
—— ALMNO3S
F10SNOD SVdI/aMI
HOLINOW
4 \
708 208

NIYOL [3(®)

G08

3TOSNOD
Svdl/ami

S
008

US 9,426,155 B2

Sheet 7 of 7

Aug. 23, 2016

U.S. Patent

Y3SN IN3MD 3MOL INTFUVASNVYL [~~~ 7] S¥3AIAONd 3OIANIS 0IHVHS OL INFMVASNYNL [C —— 7

NIMO0L zO__wwm_m WdO H1IM 3ISNOdST

| H
_ NaMOL ._.m_m_um_w_m_wz<_._oxm_ Ol 1S3nd3

———,—,———_— ————_——— —
ﬂ - == _M |||||| I_. |||||||||| tm——_—————————— i e A I_
| | “ TiN G3LSINDIY WNIORO OL 1OTMIAT | D926 |
| ! ! ! | NINOLYSH LF¥OISANY | |
L | _ _ | NIMOL NOISSIS AMI NYN13Y |]
-_—————————— - —-————————= el el elfeslielfesilegliesiiorgiessiiegfeiie el {———

! | T - |

| | _J_W NIYOL YS¥ 134035 NHNLIY { 726 |

| ! €26 ™_/NDIOL vSH 13¥03S 153N0IY | |_ |

|
| | i i — |V_ - |
_ ! I NIMOL VSH HISN NuNL3Y (_\; 0¢6 m
| la

_ | 816 L | |

! _ NI9OT |« |

_ m ! 916)_r\ QYOMSSYd/dIN 1SOd m

| -

| 1 | t g

A | e L _ NooTWeO! LdWoud 7710

i | T a]
_ | “ " T T N_‘m _
! “ | 39VdNIDOTAMI OL LOFIIIR | “ I
¥ A | | 016 |
I " 39vd NI9OTWdO OL LOFMIATY ! ! _
b= e — o - = -

806 ™\ m 15303 ! !

TN 30IAY3S ERTYEN ERITYER 7

Q34VHS g3M Q3UVHS ALI¥NO3S 1N E3M M P N
/ 4 N N 106)
906 ¥06 ¢06 006

US 9,426,155 B2

1

EXTENDING INFRASTRUCTURE SECURITY
TO SERVICES IN A CLOUD COMPUTING
ENVIRONMENT

BACKGROUND OF THE INVENTION

1. Technical Field

This disclosure relates generally to establishing a trusted
computing environment across distinct security domains in
the context of a “cloud” compute environment.

2. Background of the Related Art

An emerging information technology (IT) delivery model
is cloud computing, by which shared resources, software and
information are provided over the Internet to computers and
other devices on-demand. Cloud computing can signifi-
cantly reduce IT costs and complexities while improving
workload optimization and service delivery. With this
approach, an application instance can be hosted and made
available from Internet-based resources that are accessible
through a conventional Web browser over HTTP. An
example application might be one that provides a common
set of messaging functions, such as email, calendaring,
contact management, and instant messaging. A user would
then access the service directly over the Internet. Using this
service, an enterprise would place its email, calendar and/or
collaboration infrastructure in the cloud, and an end user
would use an appropriate client to access his or her email, or
perform a calendar operation.

Cloud compute resources are typically housed in large
server farms that run network applications, typically using a
virtualized architecture wherein applications run inside vir-
tual servers, or so-called “virtual machines” (VMs), that are
mapped onto physical servers in a data center facility. The
virtual machines typically run on top of a hypervisor, which
is a control program that allocates physical resources to the
virtual machines.

It is known in the art to provide an appliance-based
solution to facilitate rapid adoption and deployment of
cloud-based offerings. One such appliance is IBM® Work-
load Deployer, which is based on the IBM DATAPOWER®
7199/9005 product family. Typically, the appliance is posi-
tioned directly between the business workloads that many
organizations use and the underlying cloud infrastructure
and platform components. Because of this unique position,
the appliance can receive and act upon operational data, and
it can monitor application workload demand conditions and
adjust resource allocation or prioritization as required to
achieve established service level agreements. IBM Work-
load Deployer (IWD) also may be used to manage a shared,
multi-tenant environment, where isolation and security are
important.

IBM Workload Deployer and, more generally, platform-
as-a-service (PAS) infrastructure software (IPAS), can be
extended by installing additional services for the cloud
computing environment. Some examples include, for
example, caching services to add a data caching capability
to virtual applications, monitoring services to monitor health
and performance status of virtual applications, and the like.
Often, the new service is provided by a commercial product
that has its own built-in security mechanisms including, for
example, user management, authentication and access con-
trol. While it can be quite advantageous to add such services,
there is no simple way to integrate such products with the
cloud computing infrastructure to provide users seamless
security integration with single sign-on (SSO) behavior, and
consistent and unified access control policy. This is because,
typically, these additional services are installed in a manner

10

15

20

25

30

35

40

45

50

55

60

65

2

similar to any new deployment, meaning that they are
installed into their own separate security domain (for isola-
tion).

To illustrate the problem, it is well-known that different
monitoring products frequently are used to monitor different
parts and aspects of a system’s resources. Thus, for example,
there are monitor products that monitor health status and
performance of physical resources, such as the virtual
machine, CPU, memory and disk storage usage; other moni-
toring tools monitor database health, utilization and through-
put performance. When installing such disparate products in
an IBM Workload Deployer (or IPAS) environment, an
administrator may receive a general warning that, say, a
virtual machine is not functioning properly. To view the
general status in more detail, the administrator then clicks on
a resource link to one monitoring product but, by doing so,
but then he or she discovers that the problem is caused by a
database subsystem being monitored by another product. In
this process, the administrator moves from one monitoring
product to a different one, which involves traversing through
different trust domains and different resource representa-
tions. This requirement greatly complicates the deployment
and management operations.

Currently, there is no easy way to link multiple products
together, to integrate them with the cloud computing infra-
structure, and to present an integral management system.

This disclosure addresses this problem.

BRIEF SUMMARY

According to this disclosure, a cloud deployment appli-
ance (or other platform-as-a-service (IPAS) infrastructure
software) includes a mechanism to deploy a product as a
“shared service” to the cloud, as well as to enable the
product to establish a trust relationship between itself and
the appliance or IPAS. The mechanism further enables
multiple products deployed to the cloud to form trust rela-
tionships with each other (despite the fact that each deploy-
ment and each product typically, by the nature of the cloud
deployment, are intended to be isolated from one another).
In addition, once deployed and provisioned into the cloud, a
shared service can become part of a single sign-on (SSO)
domain automatically. SSO is facilitated using a token-based
exchange. Once a product registers with a token service, it
can participate in SSO. This approach enables enforcement
of consistent access control policy across product boundar-
ies, and without requiring a user to perform any configura-
tion.

The foregoing has outlined some of the more pertinent
features of the invention. These features should be construed
to be merely illustrative. Many other beneficial results can
be attained by applying the disclosed invention in a different
manner or by modifying the invention as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 depicts an exemplary block diagram of a distrib-
uted data processing environment in which exemplary
aspects of the illustrative embodiments may be imple-
mented;

FIG. 2 is an exemplary block diagram of a data processing
system in which exemplary aspects of the illustrative
embodiments may be implemented;

US 9,426,155 B2

3

FIG. 3 illustrates an exemplary cloud computing archi-
tecture in which the disclosed subject matter may be imple-
mented;

FIG. 4 illustrates an exemplary operating environment in
which a network-based appliance may be used to facilitate
deployment of one or more cloud-based offerings;

FIG. 5 illustrative representative functional components
of the network-based appliance;

FIG. 6 illustrates a first embodiment illustrating how a
shared service establishes a trust relationship using a secu-
rity server;

FIG. 7 illustrates a second embodiment illustrating how a
system service establishes a trust relationship using a secu-
rity server;

FIG. 8 illustrates a shared service single sign-on (SSO)
model according to a first embodiment of this disclosure;
and

FIG. 9 illustrates how a web client accesses a monitoring
shared service directly using a second embodiment of this
disclosure.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

With reference now to the drawings and in particular with
reference to FIGS. 1-2, exemplary diagrams of data pro-
cessing environments are provided in which illustrative
embodiments of the disclosure may be implemented. It
should be appreciated that FIGS. 1-2 are only exemplary and
are not intended to assert or imply any limitation with regard
to the environments in which aspects or embodiments of the
disclosed subject matter may be implemented. Many modi-
fications to the depicted environments may be made without
departing from the spirit and scope of the present invention.
Client-server Technologies

With reference now to the drawings, FIG. 1 depicts a
pictorial representation of an exemplary distributed data
processing system in which aspects of the illustrative
embodiments may be implemented. Distributed data pro-
cessing system 100 may include a network of computers in
which aspects of the illustrative embodiments may be imple-
mented. The distributed data processing system 100 contains
at least one network 102, which is the medium used to
provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the
like. In the depicted example, server 104 provides data, such
as boot files, operating system images, and applications to
the clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed
data processing system 100 may include additional servers,
clients, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,

5

10

15

20

25

30

35

40

45

50

55

60

65

4

educational and other computer systems that route data and
messages. Of course, the distributed data processing system
100 may also be implemented to include a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), a wide area network (WAN), or
the like. As stated above, FIG. 1 is intended as an example,
not as an architectural limitation for different embodiments
of the disclosed subject matter, and therefore, the particular
elements shown in FIG. 1 should not be considered limiting
with regard to the environments in which the illustrative
embodiments of the present invention may be implemented.

With reference now to FIG. 2, a block diagram of an
exemplary data processing system is shown in which aspects
of the illustrative embodiments may be implemented. Data
processing system 200 is an example of a computer, such as
client 110 in FIG. 1, in which computer usable code or
instructions implementing the processes for illustrative
embodiments of the disclosure may be located.

With reference now to FIG. 2, a block diagram of a data
processing system is shown in which illustrative embodi-
ments may be implemented. Data processing system 200 is
an example of a computer, such as server 104 or client 110
in FIG. 1, in which computer-usable program code or
instructions implementing the processes may be located for
the illustrative embodiments. In this illustrative example,
data processing system 200 includes communications fabric
202, which provides communications between processor
unit 204, memory 206, persistent storage 208, communica-
tions unit 210, input/output (I/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for
software that may be loaded into memory 206. Processor
unit 204 may be a set of one or more processors or may be
a multi-processor core, depending on the particular imple-
mentation. Further, processor unit 204 may be implemented
using one or more heterogeneous processor systems in
which a main processor is present with secondary processors
on a single chip. As another illustrative example, processor
unit 204 may be a symmetric multi-processor (SMP) system
containing multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices. A storage device is any piece of hardware
that is capable of storing information either on a temporary
basis and/or a permanent basis. Memory 206, in these
examples, may be, for example, a random access memory or
any other suitable volatile or non-volatile storage device.
Persistent storage 208 may take various forms depending on
the particular implementation. For example, persistent stor-
age 208 may contain one or more components or devices.
For example, persistent storage 208 may be a hard drive, a
flash memory, a rewritable optical disk, a rewritable mag-
netic tape, or some combination of the above. The media
used by persistent storage 208 also may be removable. For
example, a removable hard drive may be used for persistent
storage 208.

Communications unit 210, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro-
vide communications through the use of either or both
physical and wireless communications links.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to data processing
system 200. For example, input/output unit 212 may provide
a connection for user input through a keyboard and mouse.
Further, input/output unit 212 may send output to a printer.
Display 214 provides a mechanism to display information to
a user.

US 9,426,155 B2

5

Instructions for the operating system and applications or
programs are located on persistent storage 208. These
instructions may be loaded into memory 206 for execution
by processor unit 204. The processes of the different
embodiments may be performed by processor unit 204 using
computer implemented instructions, which may be located
in a memory, such as memory 206. These instructions are
referred to as program code, computer-usable program code,
or computer-readable program code that may be read and
executed by a processor in processor unit 204. The program
code in the different embodiments may be embodied on
different physical or tangible computer-readable media, such
as memory 206 or persistent storage 208.

Program code 216 is located in a functional form on
computer-readable media 218 that is selectively removable
and may be loaded onto or transferred to data processing
system 200 for execution by processor unit 204. Program
code 216 and computer-readable media 218 form computer
program product 220 in these examples. In one example,
computer-readable media 218 may be in a tangible form,
such as, for example, an optical or magnetic disc that is
inserted or placed into a drive or other device that is part of
persistent storage 208 for transfer onto a storage device,
such as a hard drive that is part of persistent storage 208. In
a tangible form, computer-readable media 218 also may take
the form of a persistent storage, such as a hard drive, a thumb
drive, or a flash memory that is connected to data processing
system 200. The tangible form of computer-readable media
218 is also referred to as computer-recordable storage
media. In some instances, computer-recordable media 218
may not be removable.

Alternatively, program code 216 may be transferred to
data processing system 200 from computer-readable media
218 through a communications link to communications unit
210 and/or through a connection to input/output unit 212.
The communications link and/or the connection may be
physical or wireless in the illustrative examples. The com-
puter-readable media also may take the form of non-tangible
media, such as communications links or wireless transmis-
sions containing the program code. The different compo-
nents illustrated for data processing system 200 are not
meant to provide architectural limitations to the manner in
which different embodiments may be implemented. The
different illustrative embodiments may be implemented in a
data processing system including components in addition to
or in place of those illustrated for data processing system
200. Other components shown in FIG. 2 can be varied from
the illustrative examples shown. As one example, a storage
device in data processing system 200 is any hardware
apparatus that may store data. Memory 206, persistent
storage 208, and computer-readable media 218 are examples
of storage devices in a tangible form.

In another example, a bus system may be used to imple-
ment communications fabric 202 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using
any suitable type of architecture that provides for a transfer
of data between different components or devices attached to
the bus system. Additionally, a communications unit may
include one or more devices used to transmit and receive
data, such as a modem or a network adapter. Further, a
memory may be, for example, memory 206 or a cache such
as found in an interface and memory controller hub that may
be present in communications fabric 202.

Computer program code for carrying out operations of the
present invention may be written in any combination of one
or more programming languages, including an object-ori-

10

15

20

25

30

35

40

45

50

55

60

65

6

ented programming language such as Java™, Smalltalk,
C++, C#, Objective-C, or the like, and conventional proce-
dural programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider).

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to
or in place of the hardware depicted in FIGS. 1-2. Also, the
processes of the illustrative embodiments may be applied to
a multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the disclosed subject matter.

As will be seen, the techniques described herein may
operate in conjunction within the standard client-server
paradigm such as illustrated in FIG. 1 in which client
machines communicate with an Internet-accessible Web-
based portal executing on a set of one or more machines.
End users operate Internet-connectable devices (e.g., desk-
top computers, notebook computers, Internet-enabled
mobile devices, or the like) that are capable of accessing and
interacting with the portal. Typically, each client or server
machine is a data processing system such as illustrated in
FIG. 2 comprising hardware and software, and these entities
communicate with one another over a network, such as the
Internet, an intranet, an extranet, a private network, or any
other communications medium or link. A data processing
system typically includes one or more processors, an oper-
ating system, one or more applications, and one or more
utilities. The applications on the data processing system
provide native support for Web services including, without
limitation, support for HTTP, SOAP, XML, WSDL, UDDI,
and WSFL, among others. Information regarding SOAP,
WSDL, UDDI and WSFL is available from the World Wide
Web Consortium (W3C), which is responsible for develop-
ing and maintaining these standards; further information
regarding HTTP and XML is available from Internet Engi-
neering Task Force (IETF). Familiarity with these standards
is presumed.

Cloud Computing Model

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models, all as
more particularly described and defined in “Draft NIST
Working Definition of Cloud Computing” by Peter Mell and
Tim Grance, dated Oct. 7, 2009.

In particular, the following are typical Characteristics:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

US 9,426,155 B2

7

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

The Service Models typically are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

The Deployment Models typically are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

20

25

30

40

45

55

8

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service-oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes. A representative cloud computing node is as illus-
trated in FIG. 2 above. In particular, in a cloud computing
node there is a computer system/server, which is operational
with numerous other general purpose or special purpose
computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with
computer system/server include, but are not limited to,
personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
minicomputer systems, mainframe computer systems, and
distributed cloud computing environments that include any
of the above systems or devices, and the like. Computer
system/server may be described in the general context of
computer system-executable instructions, such as program
modules, being executed by a computer system. Generally,
program modules may include routines, programs, objects,
components, logic, data structures, and so on that perform
particular tasks or implement particular abstract data types.
Computer system/server may be practiced in distributed
cloud computing environments where tasks are performed
by remote processing devices that are linked through a
communications network. In a distributed cloud computing
environment, program modules may be located in both local
and remote computer system storage media including
memory storage devices.

Referring now to FIG. 3, by way of additional back-
ground, a set of functional abstraction layers provided by a
cloud computing environment is shown. It should be under-
stood in advance that the components, layers, and functions
shown in FIG. 3 are intended to be illustrative only and
embodiments of the invention are not limited thereto. As
depicted, the following layers and corresponding functions
are provided:

Hardware and software layer 300 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® ZSERIES®
systems; RISC (Reduced Instruction Set Computer) archi-
tecture based servers, in one example IBM PSERIES®
systems; IBM XSERIES® systems; IBM BLADECEN-
TER® systems; storage devices; networks and networking
components. Examples of software components include
network application server software, in one example IBM
WEBSPHERE® application server software; and database
software, in one example IBM DB2® database software.

Virtualization layer 302 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; and virtual clients.

In one example, management layer 304 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost

US 9,426,155 B2

9

tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides iden-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 306 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation;
software development and lifecycle management; virtual
classroom education delivery; data analytics processing;
transaction processing; and others (e.g., enterprise-specific
functions in a private cloud).

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Thus, a representative cloud computing environment has
a set of high level functional components that include a front
end identity manager, a business support services (BSS)
function component, an operational support services (OSS)
function component, and the compute cloud component. The
identity manager is responsible for interfacing with request-
ing clients to provide identity management, and this com-
ponent may be implemented with one or more known
systems, such as the Tivoli Federated Identity Manager
(TFIM) that is available from IBM Corporation, of Armonk,
N.Y. In appropriate circumstances TFIM may be used to
provide federated single sign-on (F-SSO) to other cloud
components. The business support services component pro-
vides certain administrative functions, such as billing sup-
port. The operational support services component is used to
provide provisioning and management of the other cloud
components, such as virtual machine (VM) instances. The
cloud component represents the main computational
resources, which are typically a plurality of virtual machine
instances that are used to execute a target application that is
being made available for access via the cloud. One or more
databases are used to store directory, log, and other working
data. All of these components (included the front end
identity manager) are located “within” the cloud, but this is
not a requirement. In an alternative embodiment, the identity
manager may be operated externally to the cloud. The
service provider also may be operated externally to the
cloud.

Cloud Deployment Technologies

It is known to provide an appliance-based solution to
facilitate rapid adoption and deployment of both Infrastruc-
ture and Platform as Service offerings. As described above,
one such appliance is IBM Workload Deployer (IWD), and
this appliance also may be used to manage a shared, multi-
tenant environment, where isolation and security are of
utmost importance. The secure nature of the physical appli-
ance (sometimes referred to herein as a box) typically is
provided by a self-disabling switch, which is triggered if the

30

40

45

55

10

appliance cover is removed. This physical security enables
the appliance to serve as a secure vault for credentials, which
can be tied to virtual images throughout their entire lifecycle
(in storage, being dispensed, running in the cloud, or being
removed from the cloud). IBM Workload Deployer also
contains a storage driver that streamlines the storage of
image customizations. It also serves as a dedicated store for
both pre-loaded and customized middleware virtual images
and patterns. The appliance also includes advanced com-
pression and storage techniques that enable a large number
of these virtual images (each of which may be sizeable) to
be stored.

In operation, the appliance can provision standard and
customized middleware virtual images and patterns that can
be securely deployed and managed within private or on-
premise cloud computing environments. These virtual
images can help organizations to develop, test, and deploy
business applications easily and quickly, thus ending the
manual, repetitive, and error prone processes that are often
associated with creating these complex environments. Upon
completion, resources are returned to the shared resource
pool automatically for future use and are logged for internal
charge-back purposes. The appliance also manages indi-
vidual user and group access to resources, providing IT
managers with the control needed to optimize efficiency at
a fine-grain level.

Typically, the appliance includes hardware and firmware
cryptographic support to encrypt all the data on hard disk.
This data includes, without limitation, event log data. No
users, including administrative users, can access any data on
physical disk. In particular, the operating system (e.g.,
Linux) locks down the root account and does not provide a
command shell, and the user does not have file system
access. When an administrator performs a backup of the
appliance, the backup image is encrypted to protect the
confidentiality of the data. When restoring an encrypted
image, a decryption key thus is needed to decrypt the backup
image to enable the data to be restored to the appliance.

Referring to FIG. 4, a representative operating environ-
ment includes the physical appliance 400, which interfaces
to the cloud 402. The appliance may be implemented using
a data processing system such as described above with
respect to FIG. 2. Preferably, the appliance 400 includes a
Web 2.0-based user interface (UI), a command line interface
(CLI), and REST-based application programming interfaces
(APIs). The appliance provides a management function that
enables the rapid deployment of cloud-based solutions. To
that end, the appliance provides storage for (i) data 404 used
to manage user and group access to resources, (ii) for
pre-loaded and/or customizable middleware virtual images
406, and (iii) for configurable patterns and script packages
408. Patterns are logical descriptions of both the physical
and virtual assets that comprise a particular solution. The
management function and interfaces provide a template-
based approach to construction that permits the rapid cre-
ation and modification of an otherwise complex set of
hardware and software components. In particular, the use of
patterns allows an organization to construct an individual
element or integrated solution one time, and then to dispense
the final product on demand. Typically, there are two types
of patterns: virtual system patterns provide the most flex-
ibility and customization options of the two types. It consists
of an operating system and, potentially, additional software
solutions, such as WebSphere® Application Server. Virtual
application patterns are optimized and are constructed typi-
cally for the purpose of supporting a singular workload.

US 9,426,155 B2

11

As also seen in FIG. 4, the on-premise or private cloud
environment 402 on which the middleware application runs
typically constitutes hypervisors, networking infrastructure,
and storage devices that are allocated to the appliance. A
representative environment may be implemented in the
manner described above with respect to FIG. 3.

FIG. 5 illustrates how the appliance can be used to build
a custom private cloud. At step 1, the hardware, hypervisors
and networking for the cloud are identified. At step 2, the
user selects and customizes the virtual images. At step 3, the
user adds one or more script packages as needed to custom-
ize the deployed middleware environment. At step 4, pre-
installed or customized patterns are used to describe the
middleware topology to be deployed. Patterns can be built
from virtual images, e.g. using a drag-and-drop interface. At
step 5, the virtual systems are deployed to the cloud.

The references herein to IBM Workload Deployer are
exemplary and should not be taken to limit the disclosed
technique, which may be implemented on any appliance (or,
more generally, machine) having the general characteristics
and operating functionality that has been described. Specific
references to IWD should be construed to include both the
above-identified product, as well as other technologies that
implement the functionality referenced above.

By way of additional background, it is assumed that the
cloud environment (and a deployment appliance such as
described) operates in a trust framework, which comprises a
number of aspects. In this framework, public key technology
is used to secure communications. The framework leverages
a suite of security services that provide user authentication,
token service, and a certificate authority. Every server pro-
cess operative within the trust framework has its own (e.g.,
RSA) token and an RSA key pair. Trademark rights are
claimed by a third party in the designation RSA. The
server’s identity and roles are represented by a server RSA
token, which is signed by the token service; every request is
endorsed by a server RSA key. Preferably, each cloud
deployment has its own agent RSA token and RSA key pair.
The agent’s identity and roles are represented by an agent
RSA token, which is signed by a deployment administrator
RSA key; every request is signed by an agent RSA key. In
addition, the integrity and confidentiality of requests are
protected by transport layer encryption, such as SSL. Every
server (and every deployment) has an SSL certificate and
private key issued by the certificate authority.

Establishing Trust Relationships

In a cloud computing environment such as described,
virtual machines (VMs) are regularly provided to handle
different workload for different cloud customers. Because a
VM is presumed to be provisioned in an unsecured envi-
ronment, however, each VM should be in its own security
zone. Each VM requires its own identity, token, keys and
certificates, as well as a way to establish a trust relationship
back to the cloud provider, preferably across different secu-
rity domains. FIG. 6 illustrates how a VM in a separate
security zone can register itself and establish a trust rela-
tionship. During this process, and as will be described, the
VM leverages two (2) mechanisms to establish the trust
relationships. First, it receives registration artifacts from the
cloud service provider; these artifacts include information
the VM needs to talk to the cloud service provider. Second,
the VM sends its own security information to the cloud
service provider, preferably without revealing a private
security key.

In general, this approach uses a security server, which is
a process in the cloud that manages all of the security
information within the cloud environment. When a virtual

10

15

20

25

30

35

40

45

50

55

60

65

12

machine (VM) is provisioned, e.g., using the above-de-
scribed appliance (or otherwise), the cloud service provider
sends registration artifacts to the virtual machine through the
security server. The registration artifacts typically include
the security server’s public key, security headers generated
with the security server’s private key, and an identification
of the necessary roles for the VM to communicate back to
the security server. Once the VM receives the registration
artifacts, it generates a registration request to the security
server using the information in the registration artifacts. The
registration request typically includes the VM’s public key,
and a public certificate. The security server receives the
VM'’s public key and the public certificate, adds the key to
a key database, and stores the certificate in a trust key store.
Once the security server processed the registration request
from the VM, the security server generates a token and sends
it back to the VM, thus completing the registration process
and the key exchange.

FIG. 6 illustrates how to establish a trust relationship
between a shared service 600 and an IWD/IPAS security
server 602. In this embodiment, a deployment VM is pro-
visioned to have shared service (e.g., RSA-based) token and
associated (e.g., RSA-based) key pairs. Shared service pro-
viders specify an SSO services provisioning flag to be
granted a shared service RSA token. Shared services other-
wise are shielded from implementation details of the provi-
sioning process.

FIG. 7 is a more generalized example of setting up a trust
relationship. In this embodiment, the IWD/IPAS system
service 700 (in this example) establishes a trust relationship
with the IWD/IPAS security server 702. In this example, the
deployment VM is provided with registration artifacts,
which include a one-time use security token and a registra-
tion identifier (ID). In this approach, the system service 700
registers a set of one or more RSA public keys and, upon
registration, receives corresponding RSA tokens. In the FIG.
7 embodiment, the system service 700 retains its private key;
thus, this approach is more secure that than shown in FIG.
6. In FIG. 7, neither entity has private keys of the other
entity, so the two entities are on more equal terms with
respect to the trust relationship. Also, the approach in FIG.
7 is more flexible in that it enables a shared service itself to
determine how many tokens it needs. The approach in FIG.
7 further assumes that the two separate entities establish the
trust relationship using a third channel by which a first entity
gives a second entity (to which it desires the trust relation-
ship) a minimum amount of secret data (e.g., a token) so as
to construct the trust relationship.

Extending Infrastructure Security to Services

With the above as background, the subject matter of this
disclosure is now described. Without limitation, the subject
matter may be implemented within or in association with a
cloud deployment appliance as has been described.

As used herein, a “shared service” is a service that is
deployed by a cloud administrator and used by multiple
virtual application deployments. Shared services may be of
many different types, such as a caching service, a monitoring
service, a proxy service (that provides routing and load
balancing to multiple deployed web applications), and oth-
ers.

A “shared services security model” according to this
disclosure has several characteristic: a common security
model for all IWD/IPAS shared services, and common
security services for all IWD/IPAS shared services. Under
the common security model, the IWD/IPAS security server
manages user identity and access control policy, an IWD/
IPAS security services utility library shields SSO token

US 9,426,155 B2

13

exchange details from shared services providers, and shared
services providers extend IWD/IPAS access control to
shared service resources. The common security services
comprise user authentication services, user and group mem-
bership query, resource access control services, public key
management, and trust relationship management. WD/
IPAS uses a security token (called RSAToken), to represent
user identity and credentials, e.g., group membership and
security roles. As will be described, IWD/IPAS also provides
for user tokens, and these tokens are used to propagate user
identity, credentials (group membership and security roles),
and resource identifiers. In general, tokens (whether security
tokens, or user tokens) are internal (system) constructs that
are managed by a token service. A token exchange mecha-
nism is used to facilitate shared services provisioning, as is
now described.

This security model provides a seamless layer of security
infrastructure to an application (with its own security infra-
structure) running on a virtual machine in the cloud envi-
ronment. A user (e.g., an administrator) registers to the layer
of security infrastructure. Upon receiving a request by the
user to add a service (e.g., a shared service) to the applica-
tion (or to use that service, if previously deployed and
enabled), the layer of security infrastructure is used to
authenticate the user, preferably by communicating to the
application using a private key. The application security
infrastructure then adds (or enables access to) the service
without requiring direct authentication from the user to the
application security infrastructure.

FIG. 8 illustrates the IWD/IPAS shared service single
sign-on (SSO) model of this disclosure. This approach, as
will be seen, facilitates integrating the shared service with a
single sign-on to enable consistent and unified resource
management across more than one service boundary. Famil-
iarity with SSO operations is presumed. In this scenario, a
representative “shared service” is a monitoring service (pro-
vided by a monitoring product), although this is not a
limitation. The monitoring shared service may be accessed
via its own monitor console; in this use case, however,
access is desired via the deployment appliance console. In
one use case scenario, which is merely exemplary, an
administrator observes (in the IWS/IPAS console) a red
status on a particular deployment, and clicks on the resource.
This action leads the administrator to a monitoring console
provided by the monitoring service. In this process, it is
desired that the administrator is not required to register to the
monitoring service software explicitly, does not need to
authenticate to the monitoring software again, but can still
view resources that he or she needs to monitor. The mecha-
nism that is now described integrates such multiple services
and provides SSO and consistent resource management
across the service boundaries.

Thus, as illustrated, there interactions occur via IWD/
IPAS console 800, IWD/IPAS security service 802, a moni-
tor console 804, and a monitor shared services provider 806.
The IWD/IPAS security service is implemented in the secu-
rity server, which performs user identity management and
access control policy management. This scenario assumes
that the entities have established trust relationships in the
manner previously described (in either FIG. 6 or FIG. 7).

Although not shown, it is assumed that the user of the
IWD/IPAS console has been authenticated in a known
manner. The user is represented within the system (the
IWD/IPAS console 800 and the IWD/IPAS security service
802) by a first token 805. This token is not provided (or
exposed) to the user but, rather, is just an internal system
data structure. The token, which identifies what privileges

10

15

20

25

30

35

40

45

50

55

60

65

14

the user has and resources he or she can access, typically is
maintained in the system in the clear and affords the user all
deployment privileges suitable to the user’s status. In other
words, the first token is a general user token, includes no
specific deployment constraints (with respect to the user’s
privileges). The first token 805 includes the usual informa-
tion such as data identifying its “issuer” (the IWD/IPAS
security service) and its “owner” (the IWD/IPAS appliance/
console), key pairs, and the like.

According to the technique described above, the authen-
ticated user selects a link (e.g., a button, an icon, an alert, or
the like) in the IWD/IPAS console page identifying or
otherwise associated with a resource (in this case, a resource
being monitored by the service). As noted above, in one use
case, the resource is associated with a particular status (e.g.,
a problem status), although this is not a limitation. As will
be seen, this selection in effect triggers a “transfer of
control” from the TWD/IPAS console 800 to the monitor
console 804 so that the user can access and use the monitor
shared service to determine the source of the problem (or
otherwise to take some remedial or other permitted action).
Because this transfer of control is carried out over a public
network, a token exchange service is implemented. This
token exchange service is provided by suitable software
code (e.g., an IWD/IPAS security services utility library)
that, preferably, is transparent to the shared services provider
806 and seamlessly to the end user. The operation works as
follows.

At step 812, the first user token 805 is signed and provided
to the IWD/IPAS security service 802. The security service
802 receives the token 805, which is provided as cleartext,
and, at step 814, returns to the IWD/IPAS console 800 a
secret 816. The secret is protected by encryption and thus is
opaque (and suitable for transport over the public network).
At step 818, the console 808 sends the secret 816 to the
monitor console 804. At step 820, the monitor console signs
request messages with the secret with its private key that is
specified by a second “shared services” token 815 and, at
step 822, sends the signed messages and secret back to the
IWD/IPAS security service 802. The “shared services” token
815 is owned by the shared services provider 806. The
IWD/IPAS security service verifies the secret and, at step
824, sends the monitor console 804 a shared services user
token 825. The shared services user token 825 differs from
the first user token 805 in several important ways. Its
“owner” is now the shared service, and it includes specific
deployment constraints (whereas the general user token 805
did not). The shared services user token 825 includes the
specific user identity and security roles that are authorized
with respect to the shared service. The shared services user
token 825 is used to access the monitor console automati-
cally, after which the monitor console is displayed to the
user. After the user selects (from the monitor console) some
specific monitor operation, an access request is made from
the monitor console 804 to the shared service 806. The
access request is shown at step 826, and it includes the user
identity and security roles that were propagated in the shared
services user token. The shared service uses the user identity
and security roles to facilitate its access control decision at
step 828. If access is permitted, the requested information
(e.g., monitoring data) is provided at step 830 to complete
the process.

In the shared service SSO model in FIG. 8, the token
exchange is transparent to the user, and steps 820, 822 and
824 are transparent to the shared services provider. As can
be seen, and once the necessary trust relationships are
established, the approach enables the shared service to

US 9,426,155 B2

15

participate seamlessly in the single sign-on (SSO) domain to
facilitate unified access control.

FIG. 9 illustrates a second embodiment, wherein the
shared service is launched from a URL (such as a bookmark
or icon in the first service console). This embodiment uses
entities of the same type described in FIG. 8, namely, a
web-based user interface (UI) 900 from the deployer appli-
ance (or other IPAS), the security service 902, the shared
service web-based Ul 904, and the shared service 906
(represented by the URL). Appropriate trust relationships
are presumed, as previously described. In this embodiment,
the user 901 makes a request to access the monitoring shared
service by selecting a bookmarked URL in the console 900.
This is step 908. This action causes a redirect to a login page
of'the shared service UI 904. This redirect is step 910. In this
embodiment, and instead of issuing a challenge to the user,
the shared service Ul 904 (having established the necessary
trust relationship), issues a redirect to the IWD console 900.
This second redirect is step 912. Steps 910 and 912 are
transparent to the user 901. At step 914, the IWD console
900 issues a login challenge to the user 901. The user posts
his or her UlD/password at step 916. If the user 901 is
authenticated, the IWD console 900 logs into the security
service 902 at step 918. The security service 902 responds at
step 920 by returning the user token. At step 922, the IWD
console 902 issues a request to the security service for a
secret token (e.g., an RSA Token). The security service
responds at step 924 by returning the secret token. At step
926, the IWD console 900 automatically redirects to the
shared service page (the originally-requested URL), return-
ing an IWD session token and the secret token it received
from the security service at step 924. At step 926, the IWD
900 may optionally transform the resource identifier to one
that is recognized by the shared service. At step 928, the
shared service makes a request to the security service 902 to
exchange the secret token. The security service 902 responds
at step 930 by returning the shared service user token. The
shared service then issues the user the requested information
at step 932 to complete the process.

As seen in FIG. 9, the redirects at steps 910, 912 and 926
are transparent to the web client user. The steps 922 and 924,
and steps 928 and 930, are transparent to the shared service
provider. The token exchange in steps 928 and 930 in FIG.
9 corresponds to the token exchange in steps 822 and 824 in
FIG. 8.

The techniques herein facilitate shared service deploy-
ment in the cloud. The first embodiment is as described in
FIG. 8. In this approach, when an administrator or deployer
clicks on a first icon representing a service to be deployed,
the system sends a secret token that represents the admin-
istrator or deployer to the service. Using a security server,
the service exchanges the secret token with a user security
token that represents the credentials of the administrator or
the deployer. The service then validates the user security
token by extracting user identity, group, security role, and
resource identifier information. Using the extracted infor-
mation, the service then makes access control decisions. In
this approach, the user identity management, authentication
and access control are managed by the cloud computing
infrastructure. A service being deployed just needs to
exchange and validate the user security token, validate the
trust relationship, and then enforce the access control policy.
The administrator or deployer is not challenged for authen-
tication to the service and can access specified resource
services with his or her own user credentials.

In the FIG. 9 embodiment, and when the administrator or
deployer clicks a second service icon (e.g., within a first

10

15

20

25

30

35

40

45

50

55

60

65

16

service console), the service redirects to a management
console for the cloud computing infrastructure. The redirect
also specifies a resource and a second service to be accessed,
as well as the secret token that represents the administrator
or deployer. The cloud computing infrastructure forwards
the secret token or optionally replaces it with a new secret
token, and optionally transforms the resource identifier to
one that is recognized by the second service. The console
then redirects the request to the specified second service,
which exchanges the secret token for a user security token
to facilitate further access control, as described above. In
this approach, the resource representation and optional con-
version are performed by the cloud computing infrastructure
software, so there is minimal processing required from the
service.

The above-described subject matter provides many
advantages. Generally, the techniques described herein
enable the establishment of a trusted computing environ-
ment across security domains in a cloud computing envi-
ronment. The described approach enables a cloud deploy-
ment appliance (or other IPAS) to easily integrate cloud
computing infrastructure security and resource management
with one or more additional services to provide seamless
authentication and access control integration with minimal
resource configuration synchronization and thus minimal
management overhead. The approach reliably and securely
extends cloud computing infrastructure security to one or
more additional services, and it provides a mechanism to
integrate multiple services and provide SSO and consistent
resource management across service boundaries. Further,
the techniques described herein enable application security
infrastructure to add a new service without requiring direct
authentication from the user to the application security
infrastructure. Additional services may be integrated with a
single sign-on (SSO). Using this approach, and has been
described, consistent resource management is facilitated
across more than one service boundary.

In this approach, the user identity management, authen-
tication, and access control policy are managed by the cloud
computing infrastructure, e.g., the IWD/IPAS. A service
being shared just needs to exchange and validate the user
security token, validate the trust relationship, and then
enforce the access control policy. The IWD/IPAS adminis-
trator (or other deployer) does not need to be challenged for
authentication to the service and can access specified
resource services with just his or her IWD/IPAS user cre-
dentials.

While a preferred operating environment and use case (a
cloud deployment appliance or other IPAS software) has
been described, the techniques herein may be used in any
other operating environment in which it is desired to deploy
services.

As has been described, the functionality described above
may be implemented as a standalone approach, e.g., a
software-based function executed by a processor, or it may
be available as a managed service (including as a web
service via a SOAP/XML interface). The particular hard-
ware and software implementation details described herein
are merely for illustrative purposes are not meant to limit the
scope of the described subject matter.

More generally, computing devices within the context of
the disclosed subject matter are each a data processing
system (such as shown in FIG. 2) comprising hardware and
software, and these entities communicate with one another
over a network, such as the Internet, an intranet, an extranet,
a private network, or any other communications medium or
link. The applications on the data processing system provide

US 9,426,155 B2

17

native support for Web and other known services and
protocols including, without limitation, support for HTTP,
FTP, SMTP, SOAP, XML, WSDL, UDDI, and WSFL,
among others. Information regarding SOAP, WSDL, UDDI
and WSFL is available from the World Wide Web Consor-
tium (W3C), which is responsible for developing and main-
taining these standards; further information regarding HTTP,
FTP, SMTP and XML is available from Internet Engineering
Task Force (IETF). Familiarity with these known standards
and protocols is presumed.

As explained, the scheme described herein may be imple-
mented in or in conjunction with various server-side archi-
tectures including simple n-tier architectures, web portals,
federated systems, and the like. The techniques herein may
be practiced in a loosely-coupled server (including a
“cloud”-based) environment.

Still more generally, the subject matter described herein
can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing
both hardware and software elements. In a preferred
embodiment, the trusted platform module function is imple-
mented in software, which includes but is not limited to
firmware, resident software, microcode, and the like. Fur-
thermore, the download and delete interfaces and function-
ality can take the form of a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can contain or
store the program for use by or in connection with the
instruction execution system, apparatus, or device. The
medium can be an electronic, magnetic, optical, electromag-
netic, infrared, or a semiconductor system (or apparatus or
device). Examples of a computer-readable medium include
a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk. Current examples of optical disks
include compact disk-read only memory (CD-ROM), com-
pact disk-read/write (CD-R/W) and DVD. The computer-
readable medium is a tangible, non-transitory item.

The computer program product may be a product having
program instructions (or program code) to implement one or
more of the described functions. Those instructions or code
may be stored in a computer readable storage medium in a
data processing system after being downloaded over a
network from a remote data processing system. Or, those
instructions or code may be stored in a computer readable
storage medium in a server data processing system and
adapted to be downloaded over a network to a remote data
processing system for use in a computer readable storage
medium within the remote system.

In a representative embodiment, the interfaces and utility
are implemented in a special purpose computing platform,
preferably in software executed by one or more processors.
The software is maintained in one or more data stores or
memories associated with the one or more processors, and
the software may be implemented as one or more computer
programs. Collectively, this special-purpose hardware and
software comprises the functionality described above.

In the preferred embodiment, the functionality provided
herein is implemented as an adjunct or extension to an
existing cloud compute deployment management solution.

While the above describes a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order is exemplary, as

10

15

20

25

30

35

40

45

50

55

65

18

alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References in the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.

Finally, while given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and
the like.

Having described our invention, what we now claim is as
follows.

The invention claimed is:

1. A method of extending cloud computing infrastructure
security to a service that is shared across virtual application
deployments in the cloud computing infrastructure as a
shared service, the method operative in a security service
executing on a hardware element, comprising:

establishing a trust relationship between the shared ser-

vice and the security service;

upon receipt of a request from a user to access the shared

service, the request issued from an application other
than the shared service, executing a token exchange
among the application, the security service and the
shared service to exchange a first token for a shared
services token that is distinct from the first token, the
first token representing the user within the security
service and identifying privileges the user has and
resources the user can access, the shared services token
including credential information and one or more
deployment constraints on authorized access to the
shared service, the credential information including
user identity and one or more security roles, the token
exchange that exchanges the first token for the shared
services token executed transparently to a provider of
the shared service; and

issuing to the shared service the shared services token, the

credential information therein facilitating a transfer of
control from the application to shared service interface
to enable access to the shared service by the user
without challenge.

2. The method as described in claim 1 wherein the token
exchange comprises:

upon receipt by the security service of the first token,

issuing a secret that represents the user; and

upon receipt by the security service of a second token

from the shared service and veritying that the second
token is associated with the secret, exchanging the
second token for the shared services token that includes
the credential information.

3. The method as described in claim 2 wherein the second
token is exchanged for the shared services token that
includes the credential information transparently to the
shared service.

4. The method as described in claim 1 wherein the virtual
application deployments operate in distinct security zones.

5. The method as described in claim 1 wherein the
credential information in the shared services token also
includes group membership.

6. The method as described in claim 1 wherein the first
token includes no specific deployment constraints with
respect to the user’s privileges.

7. The method as described in claim 1 wherein the service
is associated with a virtual machine, and wherein the trust
relationship is established by:

US 9,426,155 B2

19

providing the virtual machine one or more registration

artifacts; and

in response, receiving from the virtual machine security

information without revealing a private security key
associated with the shared service.

8. Apparatus, comprising:

a processor;

computer memory holding computer program instructions

that when executed by the processor provide a security
service, the computer program instructions further
executed by the processor to provide a method to
extend cloud computing infrastructure security to a
service that is shared across virtual application deploy-
ments in the cloud computing infrastructure as a shared
service, the method comprising:
establishing a trust relationship between the shared
service and the security service;
upon receipt of a request from a user to access the
shared service, the request issued from an applica-
tion other than the shared service, executing a token
exchange among the application, the security service
and the shared service to exchange a first token for
a shared services token that is distinct from the first
token, the first token representing the user within the
security service and identifying what privileges the
user has and resources the user can access, the shared
services token including credential information and
one or more deployment constraints on authorized
access to the shared service, the credential informa-
tion including user identity and one or more security
roles, the token exchange that exchanges the first
token for the shared services token executed trans-
parently to a provider of the shared service; and
issuing to the shared service the shared services token,
the credential information therein facilitating a trans-
fer of control from the application to a shared service
interface to enable access to the shared service by the
user without challenge.

9. The apparatus as described in claim 8 wherein the token
exchange comprises:

upon receipt by the security service of the first token,

issuing a secret that represents the user; and

upon receipt by the security service of a second token

from the shared service and verifying that the second
token is associated with the secret, exchanging the
second token for the shared services token that includes
the credential information.

10. The apparatus as described in claim 9 wherein the
second token is exchanged for the shared services token that
includes the credential information transparently to the
shared service.

11. The apparatus as described in claim 8 wherein the
virtual application deployments operate in distinct security
zones.

12. The apparatus as described in claim 8 wherein the
credential information in the shared services token also
includes group membership.

13. The apparatus as described in claim 8 wherein the first
token includes no specific deployment constraints with
respect to the user’s privileges.

14. The apparatus as described in claim 8 wherein the
service is associated with a virtual machine, and wherein the
trust relationship is established by:

providing the virtual machine one or more registration

artifacts; and

10

20

25

30

45

50

55

60

20

in response, receiving from the virtual machine security
information without revealing a private security key
associated with the shared service.

15. A computer program product in a non-transitory
computer readable medium for use in a data processing
system that provides a security service, the non-transitory
computer readable medium comprising computer program
instructions stored thereon which, when executed by the
data processing system, provide a method to extend cloud
computing infrastructure security to a service that is shared
across virtual application deployments in the cloud comput-
ing infrastructure as a shared service, the method compris-
ing:

establishing a trust relationship between the shared ser-

vice and the security service;

upon receipt of a request from a user to access the shared

service, the request issued from an application other
than the shared service, executing a token exchange
among the application, the security service and the
shared service to exchange a first token for a shared
services token that is distinct from the first token, the
first token representing the user within the security
service and identifying what privileges the user has and
resources the user can access, the shared services token
including credential information and one or more
deployment constraints on authorized access to the
shared service, the credential information including
user identity and one or more security roles, the token
exchange that exchanges the first token for the shared
services token executed transparently to a provider of
the shared service; and

issuing to the shared service the shared services token, the

credential information therein facilitating a transfer of
control from the application to a shared service inter-
face to enable access to the shared service by the user
without challenge.

16. The computer program product as described in claim
15 wherein the token exchange comprises:

upon receipt by the security service of the first token,

issuing a secret that represents the user; and

upon receipt by the security service of a second token

from the shared service and veritying that the second
token is associated with the secret, exchanging the
second token for the shared services token that includes
the credential information.

17. The computer program product as described in claim
16 wherein the second token is exchanged for the shared
services token that includes the credential information trans-
parently to the shared service.

18. The computer program product as described in claim
15 wherein the virtual application deployments operate in
distinct security zones.

19. The computer program product as described in claim
15 wherein the credential information in the shared services
token also includes group membership.

20. The computer program product as described in claim
15 wherein the first token includes no specific deployment
constraints with respect to the user’s privileges.

21. The computer program product as described in claim
15 wherein the service is associated with a virtual machine,
and wherein the trust relationship is established by:

providing the virtual machine one or more registration

artifacts; and

in response, receiving from the virtual machine security

information without revealing a private security key
associated with the shared service.

#* #* #* #* #*

